$$2$$ 2 -Nilpotent real section conjecture
نویسندگان
چکیده
منابع مشابه
on huppert's conjecture for f_4(2)
let $g$ be a finite group and let $text{cd}(g)$ be the set of all complex irreducible character degrees of $g$. b. huppert conjectured that if $h$ is a finite nonabelian simple group such that $text{cd}(g) =text{cd}(h)$, then $gcong h times a$, where $a$ is an abelian group. in this paper, we verify the conjecture for ${f_4(2)}.$
متن کاملJacobian Conjecture and Nilpotent Mappings
We prove the equivalence of the Jacobian Conjecture (JC(n)) and the Conjecture on the cardinality of the set of fixed points of a polynomial nilpotent mapping (JN(n)) and prove a series of assertions confirming JN(n).
متن کاملA Refinement of the Toral Rank Conjecture for 2-step Nilpotent Lie Algebras
It is known that the total (co)-homoloy of a 2-step nilpotent Lie algebra g is at least 2|z|, where z is the center of g. We improve this result by showing that a better lower bound is 2t, where t = |z|+ [ |v|+1 2 ] and v is a complement of z in g. Furthermore, we provide evidence that this is the best possible bound of the form 2t.
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2013
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-013-0967-5